Locally defined quantum emission from epitaxial few-layer tungsten diselenide
نویسندگان
چکیده
منابع مشابه
Observation of intervalley quantum interference in epitaxial monolayer tungsten diselenide
The extraordinary electronic structures of monolayer transition metal dichalcogenides, such as the spin-valley-coupled band edges, have sparked great interest for potential spintronic and valleytronic applications based on these two-dimensional materials. In this work, we report the experimental observation of quasi-particle interference patterns in monolayer WSe2 using low-temperature scanning...
متن کاملSeed growth of tungsten diselenide nanotubes from tungsten oxides.
We report growth of tungsten diselenide (WSe2) nanotubes by chemical vapor deposition with a two-zone furnace. WO3 nanowires were first grown by annealing tungsten thin films under argon ambient. WSe2 nanotubes were then grown at the tips of WO3 nanowires through selenization via two steps: (i) formation of tubular WSe2 structures on the outside of WO3 nanowires, resulting in core (WO3)-shell (...
متن کاملMagnetospectroscopy of epitaxial few-layer graphene
The inter-Landau level transitions observed in far-infrared transmission experiments on few-layer graphene samples show a behaviour characteristic of the linear dispersion expected in graphene. This behaviour persists in relatively thick samples, and is qualitatively different from that of thin samples of bulk graphite.
متن کاملElectronic structure of few-layer epitaxial graphene on Ru(0001).
The electronic structure of epitaxial monolayer, bilayer, and trilayer graphene on Ru(0001) was determined by selected-area angle-resolved photoelectron spectroscopy (micro-ARPES). Micro-ARPES band maps provide evidence for a strong electronic coupling between monolayer graphene and the adjacent metal, which causes the complete disruption of the graphene pi-bands near the Fermi energy. However,...
متن کاملFew layer epitaxial germanene: a novel two-dimensional Dirac material
Monolayer germanene, a novel graphene-like germanium allotrope akin to silicene has been recently grown on metallic substrates. Lying directly on the metal surfaces the reconstructed atom-thin sheets are prone to lose the massless Dirac fermion character and unique associated physical properties of free standing germanene. Here, we show that few layer germanene, which we create by dry epitaxy o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Physics Letters
سال: 2019
ISSN: 0003-6951,1077-3118
DOI: 10.1063/1.5091779